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Abstract

The temperature jump coefficient was calculated for a binary gaseous mixture on the basis of the McCormack kinetic

model of the Boltzmann equation, which was solved by the discrete velocity method. The calculations were carried out

for the three mixtures of noble gases: neon–argon, helium–argon and helium–xenon. A strong influence of the intermo-

lecular interaction on the temperature jump coefficient was observed by comparing the results based on the model of

rigid spheres with those obtained for a realistic potential.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Usually, to calculate a temperature distribution in a

gas restricted by a solid surface the Fourier equation is

applied with the temperature continuity condition on

the gas-surface boundary, i.e. Tg = Tw, where Tg is the

temperature of the gas near the surface and Tw is the

surface temperature. It is correct when the Knudsen

number is so small, say Kn < 0.01, that the gas rarefac-

tion can be neglected. Note, the Knudsen number is de-

fined as a ratio of the molecular mean-free-path to a

characteristic size of the region occupied by gas. If the

Knudsen number is not small then the Boltzmann ki-

netic equation [1–3] must be applied. A numerical solu-
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tion of this equation requires much computational

efforts. However, for a moderately small Knudsen num-

ber, i.e. when Kn < 0.1, the Fourier equation can be still

applied but the gas rarefaction must be taken into ac-

count via the temperature jump boundary condition,

which reads

T g ¼ T w þ fT
l
P

2kT w

m

� �1=2
oT
ox0

����
x0¼0

; ð1Þ

where x 0 is the coordinate normal to the surface directed

towards the gas with the origin at the surface, l is the

stress viscosity of the gas, P is the local pressure, m is

the molecular mass of the gas, k is the Boltzmann con-

stant. The dimensionless constant fT is the temperature

jump coefficient (TJC), which must be calculated apply-

ing the Boltzmann equation to the Knudsen layer.

Once the TJC is known, then the Fourier equation

with the boundary condition (1) can be used for moder-

ately small Knudsen numbers. Such an approach allows

us to take into account a gas rarefaction and, at the
ed.

mailto:sharipov@fisica.ufpr.br 
mailto:kalempa@fisica.ufpr.br 


F. Sharipov, D. Kalempa / International Journal of Heat and Mass Transfer 48 (2005) 1076–1083 1077
same time, to avoid a numerical solving of the kinetic

Boltzmann equation for every specific problem.

A knowledge of the TJC is necessary in many engi-

neering fields such as aerothermodynamics of space

vehicles, vacuum systems, microelectromechanical sys-

tems etc. Nowadays, the TJC is so important in practical

calculations of heat transfer as the heat conductivity

coefficient.

An estimation of the TJC can be found in the book

by Kennard [4] who following Maxwell assumed that

the incident molecules on a surface have the same distri-

bution function as those in the midst of the gas. In other

words, the distribution function does not vary in the

Knudsen layer. As a result he obtained, see Eq. (238a)

of Ref. [4],

fT ¼ 2� a
a

ffiffiffi
p

p
c

ðc þ 1ÞPr ; Pr ¼ l
j
cp; ð2Þ

where a is the accommodation coefficient, c is the spe-

cific heat ratio, Pr is the Prandtl number, j is the ther-

mal conductivity of the gas, and cp is the specific heat

at a constant pressure. For a monatomic gas (Pr = 2/3

and c = 5/3) with a perfect accommodation (a = 1) the

expression (2) provides the value

fT ¼ 1:662: ð3Þ

However, this is just an estimation because the assump-

tion about the incident molecules is not fulfilled in real-

ity. To calculate the TJC the variation of the distribution

function in the Knudsen layer must be taken into ac-

count via the Boltzmann equation.

Many works devoted to numerical calculation of the

TJC for a single gas, see e.g. Refs. [5–14], were published

in the open literature. All of then report a value close to

each other but different from the value given by Eq. (3).

For instance, applying the S-model with the diffuse scat-

tering the value

fT ¼ 1:954 ð4Þ

was obtained in Ref. [14]. So, one can see that the vari-

ation of the distribution function in the Knudsen layer

influences significantly the TJC. If one wants to obtain

reliable results of heat transfer one has to use the rigor-

ously obtained TJC instead of the approximate one

given by Eq. (3).

Though in practice one deals with gaseous mixtures

more often than with a single gas, there are very few

works about this topic. Loyalka [15] obtained some ana-

lytical expressions of the TJC applying the moment

method to the Boltzmann equation. Onishi [16], Siewert

and Valougeorgis [17] solved the Hamel model equation

[18]. However, this model does not provide the correct

expressions of the transport coefficients and the results

[16,17] based on it cannot be considered as reliable. At

the same time, the McCormack model [19] yields all

transport coefficients for a mixture, i.e. viscosity, ther-
mal conductivity, diffusion, and thermal diffusion. That

is why this model was successfully used in our recent

publications [20–23]. Recently, Siewert [24] reported

some results on the TJC for mixtures, but he considered

just the hard sphere model of the intermolecular

interaction.

The aim of the present paper is to calculate the TJC

as a function of the molar concentration for some mix-

tures of the noble gases such as helium (He), neon

(Ne), argon (Ar), and xenon (Xe). The calculations are

based on the discrete velocity method applied to the

McCormack model equation [19]. Two intermolecular

interaction models are considered: hard spheres and

realistic potential.
2. Statement of the problem

To calculate the TJC we consider a binary gaseous

mixture occupying a semi-infinite space x 0 P 0 over an

infinite solid surface fixed at x 0 = 0 and having a temper-

ature Tw, which will be used as a reference (or equilib-

rium) temperature with the notation T0. The mixture

has a small temperature gradient (nT � 1) normal to

the surface, which is constant far from the surface, i.e.

T ðx0Þ ! T 0 1þ fT þ x0

‘0

� �
nT

� �
at

x0

‘0
! 1; ð5Þ

where ‘0 is a quantity of the order of the mean free path

defined as

‘0 ¼
lv0
P 0

; ð6Þ

l is the stress viscosity of the mixture at the equilibrium

temperature, P0 is the equilibrium pressure, v0 is the

characteristic molecular velocity at the temperature T0,

v0 ¼
2kT 0

m

� �1=2

; ð7Þ

m is the mean molecular mass of the mixture defined as

m ¼ C0m1 þ ð1� C0Þm2: ð8Þ

Here, ma is the molecular mass of species a and C0 is the

equilibrium concentration

C0 ¼
n01

n01 þ n02

; ð9Þ

n0a (a = 1, 2) is the equilibrium number densities of spe-

cies a.
So, the asymptotic behavior of the temperature (5)

satisfies the boundary condition (1). The fact that the

condition (1) is posed at x 0 = 0 seems to contradict to

the fact that the TJC is calculated via the asymptotic

behavior of the temperature at the infinity (x 0/‘0) ! 1
according to Eq. (5). The matter is that, the Knudsen

layer is thick when compared with the mean free path.
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At the same time, it is assumed to be very thin compared

with a characteristic size of a region occupied by a mix-

ture. The temperature on the boundary surface is as-

sumed to be equal to that outside of the Knudsen

layer. Thus, the condition (1) posed at x 0 = 0 from the

macroscopic viewpoint corresponds to the asymptotic

behavior of the temperature (5) far from the surface

from the kinetic viewpoint.

Unlike the slip coefficients considered in Refs.

[21,22], to calculate the TJC we cannot assume the con-

centration to be constant over the semi-space but we

have to take into account a concentration gradient nC

far from the surface, which is established due to the tem-

perature gradient nT. So, the asymptotic behavior of the

concentration has the form

C1ðx0Þ ¼ C0 1þ x0

‘0
nC

� �
at

x0

‘0
! 1: ð10Þ

This concentration gradient is established so as the ther-

mal diffusion is compensated by the ordinary diffusion.

As a result, both species of the mixture are at rest.

Assuming the ordinary diffusion to be equal to the ther-

mal diffusion the relation between the concentration gra-

dient nC and the temperature gradient fT is obtained

nC ¼ ðC0 � 1ÞaTnT; ð11Þ

where aT is the thermal diffusion factor given in Appen-

dix A.

When the temperature and concentration gradients

are established the normal heat flux can be calculated as

qx ¼ �j
T 0

‘0
nT; ð12Þ

where j is the thermal conductivity coefficient of the

mixture given in Appendix A, which takes into account

the concentration gradient. Because of the heat conser-

vation law the heat flux qx does not vary in the whole

space.

We are going to calculate the coefficient fT for some

mixtures of the noble gases as function of the equilib-

rium concentration C0.
3. Input equation

For further derivations it is convenient to introduce

the following dimensionless quantities:

x ¼ x0

‘0
; ca ¼

ma

2kT 0

� �1=2

va; ð13Þ

where va is the molecular velocity of species a.
Since we assumed the temperature gradient to be

small, the distribution function fa(r, c) of each species

a can be linearized as

faðr; cÞ ¼ fM
a ðx; cÞ½1þ haðx; cÞnT�; ð14Þ
where fM
a is the local Maxwellian corresponding to the

state of the mixture at the infinity, i.e.,

fM
a ðx; cÞ ¼ n1aðxÞ

ma

2pkT1ðxÞ

� �3=2

exp � c2a
T1ðxÞ=T 0

� �
;

ð15Þ

T1ðxÞ ¼ T 0½1þ xnT�; ð16Þ

n1a ¼ n0a½1� xnTð1þ gaÞ�; ð17Þ

g1 ¼ ð1� C0ÞaT; g2 ¼ �C0aT: ð18Þ

Note, Eq. (17) takes into account the fact that the pres-

sure of the mixture does not vary far from the surface,

while the concentration has the gradient given by

Eq. (11).

The perturbation functions ha obey the two coupled

Boltzmann equations [1,2], which for the problem in

question read

cax
oha

ox
¼ ‘0

ma

2kT 0

� �1=2 X2

b¼1

bLabha � cax c2a �
5

2
� ga

� �
;

a ¼ 1; 2: ð19Þ

bLabha is the linearized collision operator between species

a and b. Like the previous works [20–23], here we also

apply the McCormack model kinetic equation [19],

which provides reliable results but requires modest com-

putational efforts. For the problem under question the

collision operator is written as

bLabha ¼ �cabha þ cabta �
ma

m

	 
1=2

mð2Þab qa �
ma

mb
qb

� �
cax

þ cabsa � 2
mab

mb
ðsa � sbÞmð1Þab

� �
c2a �

3

2

� �
þ 2½ðcab � mð3Þab ÞPaxx þ mð4Þab Pbxx�

 c2ax �
1

2
ðc2ay þ c2azÞ

� �
þ 8

10

ma

m

	 
1=2

 ðcab � mð5Þab Þqa þ mð6Þab

mb

ma

� �1=2

qb

" #

 cax c2a �
5

2

� �
; ð20Þ

where mab is the reduced mass defined by Eq. (A.15).

The quantities mðkÞab are given in Appendix A. The dimen-

sionless moments of the distribution function are given

as

taðxÞ ¼
1

p3=2

Z
expð�c2aÞhaðx; caÞdca; ð21Þ

saðxÞ ¼
1

p3=2

Z
expð�c2aÞhaðx; caÞ

2

3
c2a � 1

� �
dca; ð22Þ
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PaxxðxÞ ¼
1

p3=2

Z
expð�c2aÞhaðx; caÞ c2ax �

1

3
c2a

� �
dca;

ð23Þ

qaðxÞ ¼
1

p3=2

m
ma

� �1=2 Z
expð�c2aÞhaðx; caÞcaxc2a dca: ð24Þ

Applying the Chapman–Enskog method to the McCor-

mack model we obtain the same expressions of the trans-

port coefficients as those obtained from the exact

Boltzmann equation [1,2]. The explicit expressions of

the coefficients are given in Appendix A.

The relations of the dimensionless moments (21)–(24)

to the corresponding dimensional quantities are as

follows:

naðxÞ � n1aðxÞ
n0anT

¼ taðxÞ; a ¼ 1; 2; ð25Þ

T ðxÞ � T1ðxÞ
T 0nT

¼ sðxÞ ¼ C0s1ðxÞ þ ð1� C0Þs2ðxÞ; ð26Þ

PxxðxÞ
2P 0nT

¼ C0P1xxðxÞ þ ð1� C0ÞP2xxðxÞ; ð27Þ

qx
P 0v0nT

¼ C0q1ðxÞ þ ð1� C0Þq2ðxÞ; ð28Þ

where na(x) is the number density of species a, T(x) is the
temperature of the mixture and Pxx(x) is the diagonal

element of the pressure tensor of the mixture. In Eq.

(20) we considered the isotropy in the plane yz, i.e.

Payy ¼ Pazz; ð29Þ

and the fact that the stress tensor is traceless, i.e.

Paxx þ Payy þ Pazz ¼ 0: ð30Þ

With the help of Eqs. (12) and (28) the quantities q1
and q2 can be related to each other as

C0q1ðxÞ þ ð1� C0Þq2ðxÞ ¼ � mj
2kl

: ð31Þ

Using this equality we may reduce the number of un-

known moments in the collision operator given by

Eq. (20).

The parameters cab are proportional to the collision

frequency between species a and b and appear only in

the combinations

c1 ¼ c11 þ c12; c2 ¼ c21 þ c22: ð32Þ

Thus, it is sufficient to define c1 and c2 for which we use

the same expressions as in the previous works [20–23],

i.e.

ca ¼
P 0a

la

; ð33Þ

where P0a is the equilibrium partial pressure and la is

the partial viscosity given by Eq. (A.4).
We assumed the impermeability condition on the sur-

face with the diffuse scattering of gaseous particles.

Mathematically, it means that

hað0; caÞ ¼
2

p

Z
c0ax<0

c0axhað0; c0axÞ expð�c02a Þdc0a for cax P 0:

ð34Þ

According to the experimental data [25,26] and the the-

oretical results [14] the interaction of helium and neon

with a glass surface differs from the diffuse one. How-

ever, our aim is to study the dependence of the TJC

on the chemical composition of the mixture. That is

why we restrict ourselves just by the diffuse reflection

for all species.

Far from the surface i.e. x! 1, the perturbation

functions are assumed to be spatial uniform, i.e.

oha

ox
¼ 0 at x ! 1: ð35Þ

The system of kinetic equations (19) with the bound-

ary conditions (34) and (35) was solved by the discrete

velocity method [27]. Once the equation is solved and

the temperature profile is known then the TJC is calcu-

lated as

fT ¼ lim
x!1

sðxÞ; ð36Þ

which follows from Eqs. (5) and (26).

The TJC was calculated with the relative numerical

error less than 0.1%. The numerical accuracy was esti-

mated by comparing the results for different grid

parameters.

The numerical calculations were carried out for the

same mixtures considered in the previous works [21–

23], namely, Ne–Ar, He–Ar and He–Xe. These mixtures

have quite different molecular mass ratios and allow us

to study the dependence of the TJC on this parameter.

The omega integrals XðijÞ
ab determining the functions

m(k) depend on the intermolecular potential. For the hard

spheres they can be calculated analytically, see Eq.

(A.16). The molecular diameters da of every species a
being part of the integrals were calculated via the exper-

imental data on the viscosities la of the single gases He,

Ne, Ar and Xe at the temperature T = 300 K given in

Ref. [28]. The ratios of the diameters d2/d1 obtained

from the viscosities are as follows: 1.406, 1.665, and

2.226 for the mixtures, Ne–Ar, He–Ar, and He–Xe,

respectively.

However, in Refs. [22,23] it was found that the ther-

mal and diffuse slip coefficients are very sensitive to the

intermolecular potential and the same is expected for the

TJC. To study this influence upon the TJC the so-called

realistic potential was considered too. It means that the

empirical expressions of the omega integrals XðijÞ
ab given

in Ref. [28] were used. These expressions determine the

transport coefficients of the mixtures and reproduce
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them within an experimental error. The integrals were

calculated assuming the temperature equal to 300 K.

concentration C0

C0 fT

Rigid spheres Realistic potential

Present Ref. [15] Present Ref. [15]

0.0 1.954 1.931 1.954 1.931

0.01 1.941 1.918 1.953 1.930

0.1 1.845 1.829 1.953 1.930

0.2 1.783 1.777 1.962 1.941

0.3 1.755 1.755 1.976 1.958

0.4 1.753 1.754 1.995 1.977

0.5 1.777 1.770 2.017 1.996

0.6 1.819 1.802 2.040 2.015

0.7 1.876 1.853 2.062 2.034

0.8 1.943 1.917 2.078 2.049

0.9 2.000 1.975 2.069 2.043

0.95 2.004 1.979 2.036 2.012

0.99 1.971 1.948 1.977 1.954

1.0 1.954 1.931 1.954 1.931

Table 3

Temperature jump coefficient fT of the mixture He–Xe vs

concentration C0

C0 fT

Rigid spheres Realistic potential

Present Ref. [15] Present Ref. [15]

0.0 1.954 1.931 1.954 1.931

0.01 1.943 1.920 1.990 1.965

0.1 1.884 1.871 2.203 2.156

0.2 1.873 1.876 2.330 2.279

0.3 1.893 1.908 2.413 2.369

0.4 1.934 1.955 2.472 2.439
4. Numerical results and discussion

The results of the numerical calculations for the three

mixtures Ne–Ar, He–Ar and He–Xe are presented in

Tables 1–3, respectively. The data corresponding to the

rigid sphere model are given in the second columns of

Tables 1–3. These values coincide with those reported

by Siewert [24] obtained by the analytical discrete ordi-

nate method. The results corresponding to the realistic

potential are given in the fourth columns of Tables 1–

3. Our results are compared with those obtained by Loy-

alka [15] applying the moment method to the Boltzmann

equation. His results are given in the third and fifth col-

umns of Tables 1–3 for the rigid sphere model and for

the realistic potential, respectively. From these data we

may conclude the following:

(i) At the limits corresponding to a single gas, i.e.

C0 = 0 and C0 = 1, the TJC is exactly the same as

that obtained from the S-model in Ref. [14] and

given by Eq. (4). This is a natural result because

the McCormack model is reduced to the S-model

in the case of a single gas.

(ii) Like the thermal slip coefficient calculated in the

previous work [22], the TJC is very sensitive to

the intermolecular interaction potential. The differ-

ence between the TJC for the rigid sphere and that

for the realistic potential reaches 3%, 12% and 26%

for the mixtures Ne–Ar, He–Ar and He–Xe,

respectively, i.e. the difference increases by increas-
Table 1

Temperature jump coefficient fT of the mixture Ne–Ar vs

concentration C0

C0 fT

Rigid spheres Realistic potential

Present Ref. [15] Present Ref. [15]

0.0 1.954 1.931 1.954 1.931

0.01 1.953 1.930 1.956 1.933

0.1 1.948 1.924 1.970 1.945

0.2 1.943 1.918 1.982 1.952

0.3 1.941 1.914 1.988 1.957

0.4 1.940 1.912 1.991 1.959

0.5 1.940 1.912 1.991 1.959

0.6 1.941 1.913 1.988 1.956

0.7 1.943 1.916 1.982 1.953

0.8 1.946 1.920 1.974 1.947

0.9 1.949 1.925 1.965 1.940

0.95 1.952 1.928 1.960 1.936

0.99 1.954 1.930 1.955 1.932

1.0 1.954 1.931 1.954 1.931

0.5 1.992 2.009 2.515 2.492

0.6 2.067 2.070 2.544 2.523

0.7 2.158 2.144 2.556 2.530

0.8 2.263 2.236 2.540 2.509

0.9 2.347 2.318 2.458 2.428

0.95 2.312 2.284 2.339 2.311

0.99 2.090 2.065 2.085 2.060

1.0 1.954 1.931 1.954 1.931
ing the molecular mass ratio m2/m1. For the rigid

spheres the TJC has a non-monotone dependence

on the concentration. It has a minimum near

C0 = 0.5 and a maximum near C0 = 0.9. For the

realist potential the TJC is always larger than that

of a single gas. Thus, the intermolecular potential

changes qualitatively the dependence of the TJC

on the mixture concentration.

(iii) Comparing our results with those obtained by Loy-

alka in Ref. [15] applying the moment method to

the Boltzmann equation we conclude that both

methods provide the same qualitative behavior of
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the TJC. Quantitatively, there is a difference

between our results and those obtained in Ref.

[15]. The maximum difference between the values

obtained by the two methods is about 1% for the

rigid sphere model and 2% for the realistic poten-

tial for all mixtures considered here. So, we can

say that the results obtained by two different meth-

ods for both potentials are in a good agreement

with each other, i.e. the TJC is not sensitive to

the method of solution.

(iv) Small quantity of the heavy component in a mix-

ture changes significantly the value of the TJC.

For instance, the mixture He–Xe with the concen-

tration C0 = 0.99 contains just 1% of Xe, while

the TJC of this mixture differs from that for a sin-

gle gas for 7%.

To show how much is the variation of the moments

in the Knudsen layer we introduce the following two

quantities:

tðxÞ ¼ nðxÞ � n1ðxÞ
n0nT

¼ C0t1ðxÞ þ ð1� C0Þt2ðxÞ; ð37Þ

vðxÞ ¼ CðxÞ � C1ðxÞ
C0nT

¼ t1ðxÞ � tðxÞ: ð38Þ
Table 4

Temperature, density and concentration deviations for the mixture N

x C0 = 0 C0 = 0.1 C0 =

s �t s �t �v s

0.0 1.280 1.432 1.284 1.436 0.101 1.28

0.1 1.434 1.564 1.435 1.567 0.087 1.44

0.2 1.508 1.624 1.512 1.628 0.079 1.51

0.5 1.643 1.727 1.648 1.733 0.065 1.65

1.0 1.756 1.811 1.763 1.819 0.051 1.77

2.0 1.857 1.883 1.867 1.894 0.033 1.88

5.0 1.936 1.939 1.949 1.954 0.011 1.96

10.0 1.952 1.952 1.968 1.968 0.002 1.98

20.0 1.954 1.954 1.970 1.970 0.000 1.99

Table 5

Temperature, density and concentration deviations for the mixture H

x C0 = 0 C0 = 0.1 C0 =

s �t s �t �v s

0.0 1.280 1.432 1.273 1.424 0.029 1.29

0.1 1.434 1.564 1.499 1.551 0.015 1.43

0.2 1.508 1.624 1.494 1.610 0.010 1.50

0.5 1.643 1.727 1.627 1.713 0.005 1.64

1.0 1.756 1.811 1.741 1.797 0.004 1.76

2.0 1.857 1.883 1.844 1.872 0.006 1.87

5.0 1.936 1.939 1.929 1.934 0.007 1.98

10.0 1.952 1.952 1.949 1.950 0.003 2.01

20.0 1.954 1.954 1.953 1.953 0.000 2.01
The quantity t(x) is the deviation of the total number

density, i.e. n(x) = n1(x) + n2(x) from its asymptotic

behavior n1(x) given as

n1ðxÞ ¼ n11ðxÞ þ n12ðxÞ ¼ n0ð1� xnTÞ; ð39Þ

where Eq. (17) has been used. The quantity v(x) corre-

sponds to the concentration deviation from its asymp-

totic behavior given by Eq. (10). The temperature

deviation s(x) has been defined above by Eq. (26).

The deviations s(x), t(x) and v(x) for some values of

the concentration are given in Tables 4–6 for the mix-

tures Ne–Ar, He–Ar and He–Xe, respectively. The sec-

ond and third columns correspond to a single gas.

From these data we can see that in all cases

lim
x!1

sðxÞ ¼ � lim
x!1

tðxÞ: ð40Þ

Physically, it means that no pressure deviation from its

equilibrium value P0 far from the surface. However,

near the surface s + t 5 0, i.e. there is a small deviation

of the pressure from P0. The variations of both temper-

ature and density in the Knudsen layer are significant

and depend on the chemical composition of mixture.

That is why the neglect of the density distribution vari-

ation in the Knudsen layer made in the book [4] leads to

the significant error. The concentration deviation v in
e–Ar (realistic potential)

0.5 C0 = 0.9

�t �v s �t �v

8 1.441 0.059 1.283 1.435 0.012

0 1.571 0.050 1.434 1.565 0.010

7 1.633 0.045 1.511 1.626 0.009

5 1.740 0.035 1.646 1.732 0.006

2 1.829 0.026 1.761 1.817 0.004

0 1.908 0.015 1.864 1.891 0.002

7 1.972 0.004 1.945 1.950 0.000

8 1.988 0.000 1.963 1.963 0.000

1 1.991 0.000 1.965 1.965 0.000

e–Ar (realistic potential)

0.5 C0 = 0.9

�t �v s �t �v

2 1.443 0.052 1.344 1.501 0.019

3 1.565 0.046 1.493 1.630 0.018

6 1.624 0.043 1.570 1.692 0.016

1 1.731 0.037 1.710 1.802 0.013

1 1.822 0.030 1.833 1.894 0.009

7 1.908 0.020 1.947 1.978 0.005

2 1.988 0.007 2.042 2.048 0.001

1 2.012 0.001 2.065 2.066 0.000

7 2.017 0.001 2.069 2.069 0.000



Table 6

Temperature, density and concentration deviations for the mixture He–Xe (realistic potential)

x C0 = 0 C0 = 0.1 C0 = 0.5 C0 = 0.9

s �t s �t �v s �t �v s �t �v

0.0 1.280 1.432 1.351 1.510 0.208 1.552 1.733 0.133 1.593 1.780 0.024

0.1 1.434 1.564 1.506 1.644 0.189 1.707 1.867 0.123 1.750 1.916 0.024

0.2 1.508 1.624 1.585 1.708 0.182 1.790 1.935 0.118 1.833 1.984 0.023

0.5 1.643 1.727 1.730 1.822 0.173 1.947 2.062 0.107 1.990 2.107 0.020

1.0 1.756 1.811 1.858 1.919 0.167 2.099 2.178 0.095 2.134 2.217 0.015

2.0 1.857 1.883 1.984 2.014 0.154 2.256 2.300 0.075 2.276 2.322 0.010

5.0 1.936 1.939 2.111 2.116 0.112 2.426 2.436 0.038 2.410 2.421 0.003

10.0 1.952 1.952 2.168 2.169 0.058 2.494 2.495 0.012 2.450 2.452 0.000

20.0 1.954 1.954 2.197 2.196 0.013 2.514 2.514 0.001 2.458 2.458 0.000

1082 F. Sharipov, D. Kalempa / International Journal of Heat and Mass Transfer 48 (2005) 1076–1083
the Knudsen layer is small and tends to zero at the

infinity.
5. Conclusions

The temperature jump coefficient was calculated as a

function of the molar concentration for the three

mixtures of the noble gases: Ne–Ar, He–Ar, and He–

Xe. The calculations were carried out for two molecular

models: hard spheres and realistic potential. It was

found that the temperature jump coefficient is strongly

sensitive to the intermolecular potential. So, reliable re-

sults on this coefficient can be obtained just on the basis

of the realistic potential, while an application of the

hard sphere model can give a qualitatively different

dependence of the coefficient on the mixture

concentration.

Comparison of the present results with those ob-

tained by a different method showed that the tempera-

ture jump coefficient is weakly sensitive to the method

of solution.

For the mixture with a high ratio of the molecular

masses, e.g. He–Xe, this coefficient differs significantly

from that for a single gas. That is why it is very impor-

tant to use the reliable and rigorously obtained result on

the temperature jump coefficient instead of that given by

Eq. (2), which was obtained as an estimation in Ref. [4].

The variations of the temperature and number den-

sity in the Knudsen layer are significant and cannot be

neglected.
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Appendix A. Expressions of the transport coefficients

The transport coefficients used to state the problem,

namely, viscosity l, thermal conductivity j and thermal

diffusion factor aT, can be obtained from the Boltzmann

equation applying the Chapman–Enskog method [1,2].

Their expressions are as follows:

l ¼ l1 þ l2; ðA:1Þ

j ¼ j1 þ j2; ðA:2Þ

aT ¼ � 5

4

nmð2Þ12

n2

aT1 �
m1

m2

� �2

aT2

" #
; ðA:3Þ

la ¼ P aðWb þ mð4Þab ÞðWaWb � mð4Þab mð4Þba Þ
�1
; ðA:4Þ

aTa ¼ Ub þ
ma

mb

� �1=2

mð6Þab

" #
ðUaUb � mð6Þab mð6Þba Þ

�1
; ðA:5Þ

Wa ¼ mð3Þaa � mð4Þaa þ mð3Þab ; ðA:6Þ

Ua ¼ mð5Þaa � mð6Þaa þ mð5Þab ; ðA:7Þ

ja ¼
5

2

P ak
ma

aTa: ðA:8Þ

b 5 a in Eqs. (A.4)–(A.7).

mð1Þab ¼ 16

3

mab

ma
nbX

ð11Þ
ab ; ðA:9Þ

mð2Þab ¼ 64

15

mab

ma

� �2

nb Xð12Þ
ab � 5

2
Xð11Þ

ab

� �
; ðA:10Þ

mð3Þab ¼ 16

5

m2
ab

mamb
nb

10

3
Xð11Þ

ab þ mb

ma
Xð22Þ

ab

� �
; ðA:11Þ

mð4Þab ¼ 16

5

m2
ab

mamb
nb

10

3
Xð11Þ

ab � Xð22Þ
ab

� �
; ðA:12Þ
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mð5Þab ¼ 64

15

mab

ma

� �3 ma

mb
nb Xð22Þ

ab þ 15

4

ma

mb
þ 25

8

mb

ma

� �
Xð11Þ

ab

�
� 1

2

mb

ma
ð5Xð12Þ

ab � Xð13Þ
ab Þ

�
; ðA:13Þ

mð6Þab ¼ 64

15

mab

ma

� �3 ma

mb

� �3=2

nb �Xð22Þ
ab þ 55

8
Xð11Þ

ab

�
� 5

2
Xð12Þ

ab þ 1

2
Xð13Þ

ab

�
; ðA:14Þ

mab ¼ mamb

ma þ mb
: ðA:15Þ

XðijÞ
ab are the Chapman–Cowling integrals [2], which de-

pend on the intermolecular interaction potential. For

the rigid spheres model these integrals read

XðijÞ
ab ¼ ðjþ 1Þ!

8
1� 1þ ð�1Þi

2ðiþ 1Þ

� �
pkT
2mab

� �1=2

ðda þ dbÞ2;

ðA:16Þ

where da is the molecular diameter of specie a. For the

realistic potential the Chapman–Cowling integrals are

calculated from the expressions given in Ref. [28].
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